It's a pity that BPL doesn't wrap STL containers out of the box. It would be good to have "batteries included". But to be fair, a fully featured container wrapper is a lot of code and will take very long to compile. It is a major research project to develop "a best" fully featured container wrapper. Note that what you want depends on the element type (e.g. what makes sense for std::complex<> as an element type does not necessarily make sense for double, what makes sense for double might not make sense for int and vice versa, etc. etc.)! I cannot even imagine what a comprehensive solution for std::map<> could look like since it will have to deal with combinations of two types. To see an example of a more-or-less fully featured multi-dimensional array wrapper look at flex_wrapper.h
Contents
C++ classes
In our case we have vector and map to wrap and had to decide how to wrap them.
using namespace std; class Shape; typedef vector<Shape> Geometry; typedef map<string,Geometry> Layer;
We have two choices:
wrap them with class_<> ourself or
write to_python_converter() and some wrappers to extract<data> from python.
Our goal is to get to the working prototype as soon as we can. So in simplistic (a) approach
using namespace boost::python; class_<Shape>("Shape"); class_<Geometry>("Geometry"); class_<Layer>("Layer");
We'll have our containers exposed but without any working machinery inside them. Approach (b)
class vector_adapter
seems to be easiest to get the C++ containers exposed as Python containers
but doesn't work (for me :)).
So we have to revert to approach (a) and write a wrapper to add Python container machinery to the exposed classes.
list
To pretend a Python list a class shall have methods:
len,
getitem to be readable,
setitem to be writable,
delitem to delete elements.
We have len right away:
.def("__len__", &Geometry::size)
but for others let's have a helper class:
template<class T> struct std_item { typedef typename T::value_type V; static V& get(T const& x, int i) { if( i<0 ) i+=x.size(); if( i>=0 && i<x.size() ) return x[i]; IndexError(); } static void set(T const& x, int i, V const& v) { if( i<0 ) i+=x.size(); if( i>=0 && i<x.size() ) x[i]=v; else IndexError(); } static void del(T const& x, int i) { if( i<0 ) i+=x.size(); if( i>=0 && i<x.size() ) x.erase(i); else IndexError(); } static void add(T const& x, V const& v) { x.push_back(v); } }; void IndexError() { PyErr_SetString(PyExc_IndexError, "Index out of range"); }
which allows us to have nice pythonic negative indexes and easy to read definitions.
Then in BOOST_PYTHON_MODULE we use it:
class_<Geometry>("Geometry"); .def("__len__", &Geometry::size) .def("clear", &Geometry::clear) .def("append", &std_item<Geometry>::add, with_custodian_and_ward<1,2>()) // to let container keep value .def("__getitem__", &std_item<Geometry>::get, return_value_policy<copy_non_const_reference>()) .def("__setitem__", &std_item<Geometry>::set, with_custodian_and_ward<1,2>()) // to let container keep value .def("__delitem__", &std_item<Geometry>::del) ;
map
And the same approach for map.
template<class T> struct map_item { typedef typename T::key_type K; typedef typename T::mapped_type V; static V& get(T const& x, K const& i) { if( x.find(i) != x.end() ) return x[i]; KeyError(); } static void set(T const& x, K const& i, V const& v) { x[i]=v; // use map autocreation feature } static void del(T const& x, K const& i) { if( x.find(i) != x.end() ) x.erase(i); else KeyError(); } }; void KeyError() { PyErr_SetString(PyExc_KeyError, "Key not found"); }
And in our case:
class_<Layer>("Layer"); .def("__len__", &Layer::size) .def("clear", &Layer::clear) .def("__getitem__", &map_item<Layer>::get, return_value_policy<copy_non_const_reference>()) .def("__setitem__", &map_item<Layer>::set, with_custodian_and_ward<1,2>()) // to let container keep value .def("__delitem__", &map_item<Layer>::del) ;
But it's only very basic functionality. Let's add some convinience.
key in container
To use python construct key in container we need to implement __contains__:
for vector (list, queue)
static bool in(T const& x, V const& v) { return find_eq(x.begin, x.end, v) != x.end(); }
for map
static bool in(T const& x, K const& i) { return x.find(i) != x.end(); }
iterators
Also very useful thing is to iterate through our containers.
For the vector boost.python has it:
.def("__iter__", iterator<Geomery>())
And for map it needs some help
static list keys(T const& x) { list t; for(T::const_iterator it=x.begin; it!=x.end(); ++it) t.append(it->first); return t; } static list values(T const& x) { list t; for(T::const_iterator it=x.begin; it!=x.end(); ++it) t.append(it->second); return t; } static list items(T const& x) { list t; for(T::const_iterator it=x.begin; it!=x.end(); ++it) t.append(make_tuple(it->first,it->second)); return t; }
Here we used simplistic approach for the map. We didn't use iterator protocol, but construct appropriate lists ourselfs.
index
Some ice on top:
static int std_item::index(T const& x, V const& v) { int i=0; for(typename T::const_iterator it=x.begin; it!=x.end(); ++it,++i) if( *it == v ) return i; return -1; }
static int map_item::index(T const& x, K const& k) { int i=0; for(typename T::const_iterator it=x.begin; it!=x.end(); ++it,++i) if( it->first == k ) return i; return -1; }
and we are all set.
download
You can download container helper classes from container.h. <- The file is EMPTY!!!