This page is meant to be a central repository of decorator code pieces, whether useful or not <wink>. It is NOT a page to discuss decorator syntax!
Feel free to add your suggestions (please use the current decorator syntax @dec)!
Property Definition
These decorators provide a readable way to define properties:
1 import sys
2
3 def propget(func):
4 locals = sys._getframe(1).f_locals
5 name = func.__name__
6 prop = locals.get(name)
7 if not isinstance(prop, property):
8 prop = property(func, doc=func.__doc__)
9 else:
10 doc = prop.__doc__ or func.__doc__
11 prop = property(func, prop.fset, prop.fdel, doc)
12 return prop
13
14 def propset(func):
15 locals = sys._getframe(1).f_locals
16 name = func.__name__
17 prop = locals.get(name)
18 if not isinstance(prop, property):
19 prop = property(None, func, doc=func.__doc__)
20 else:
21 doc = prop.__doc__ or func.__doc__
22 prop = property(prop.fget, func, prop.fdel, doc)
23 return prop
24
25 def propdel(func):
26 locals = sys._getframe(1).f_locals
27 name = func.__name__
28 prop = locals.get(name)
29 if not isinstance(prop, property):
30 prop = property(None, None, func, doc=func.__doc__)
31 else:
32 prop = property(prop.fget, prop.fset, func, prop.__doc__)
33 return prop
34
35 # These can be used like this:
36
37 class Example(object):
38
39 @propget
40 def myattr(self):
41 return self._half * 2
42
43 @propset
44 def myattr(self, value):
45 self._half = value / 2
46
47 @propdel
48 def myattr(self):
49 del self._half
Here's a way that doesn't require any new decorators:
Yet another property decorator:
1 def Property(function):
2 keys = 'fget', 'fset', 'fdel'
3 func_locals = {'doc':function.__doc__}
4 def probeFunc(frame, event, arg):
5 if event == 'return':
6 locals = frame.f_locals
7 func_locals.update(dict((k,locals.get(k)) for k in keys))
8 sys.settrace(None)
9 return probeFunc
10 sys.settrace(probeFunc)
11 function()
12 return property(**func_locals)
13
14 #====== Example =======================================================
15
16 from math import radians, degrees, pi
17
18 class Angle(object):
19 def __init__(self,rad):
20 self._rad = rad
21
22 @Property
23 def rad():
24 '''The angle in radians'''
25 def fget(self):
26 return self._rad
27 def fset(self,angle):
28 if isinstance(angle,Angle): angle = angle.rad
29 self._rad = float(angle)
30
31 @Property
32 def deg():
33 '''The angle in degrees'''
34 def fget(self):
35 return degrees(self._rad)
36 def fset(self,angle):
37 if isinstance(angle,Angle): angle = angle.deg
38 self._rad = radians(angle)
Memoize
Here's a memoizing class.
1 class memoized(object):
2 """Decorator that caches a function's return value each time it is called.
3 If called later with the same arguments, the cached value is returned, and
4 not re-evaluated.
5 """
6 def __init__(self, func):
7 self.func = func
8 self.cache = {}
9 def __call__(self, *args):
10 try:
11 return self.cache[args]
12 except KeyError:
13 self.cache[args] = value = self.func(*args)
14 return value
15 except TypeError:
16 # uncachable -- for instance, passing a list as an argument.
17 # Better to not cache than to blow up entirely.
18 return self.func(*args)
19 def __repr__(self):
20 """Return the function's docstring."""
21 return self.func.__doc__
22
23 @memoized
24 def fibonacci(n):
25 "Return the nth fibonacci number."
26 if n in (0, 1):
27 return n
28 return fibonacci(n-1) + fibonacci(n-2)
29
30 print fibonacci(12)
Pseudo-currying
1 class curried(object):
2 """
3 Decorator that returns a function that keeps returning functions
4 until all arguments are supplied; then the original function is
5 evaluated.
6 """
7
8 def __init__(self, func, *a):
9 self.func = func
10 self.args = a
11 def __call__(self, *a):
12 args = self.args + a
13 if len(args) < self.func.func_code.co_argcount:
14 return curried(self.func, *args)
15 else:
16 return self.func(*args)
17
18
19 @curried
20 def add(a, b):
21 return a+b
22
23 add1 = add(1)
24
25 print add1(2)
Controllable DIY debug
(Other hooks could be similarly added. Docstrings and exceptions are left out for simplicity of demonstration.)
1 import sys
2
3 WHAT_TO_DEBUG = set(['io', 'core']) # change to what you need
4
5 class debug:
6 """ Decorator which helps to control what aspects of a program to debug
7 on per-function basis. Aspects are provided as list of arguments.
8 It DOESN'T slowdown functions which aren't supposed to be debugged.
9 """
10 def __init__(self, aspects=None):
11 self.aspects = set(aspects)
12
13 def __call__(self, f):
14 if self.aspects & WHAT_TO_DEBUG:
15 def newf(*args, **kwds):
16 print >> sys.stderr, f.func_name, args, kwds
17 f_result = f(*args, **kwds)
18 print >> sys.stderr, f.func_name, "returned", f_result
19 return f_result
20 newf.__doc__ = f.__doc__
21 return newf
22 else:
23 return f
24
25 @debug(['io'])
26 def prn(x):
27 print x
28
29 @debug(['core'])
30 def mult(x, y):
31 return x * y
32
33 prn(mult(2,2))
Easy adding methods to a class instance
Credits to John Roth.
1 class Foo:
2 def __init__(self):
3 self.x = 42
4
5 foo = Foo()
6
7 def addto(instance):
8 def decorator(f):
9 import new
10 f = new.instancemethod(f, instance, instance.__class__)
11 setattr(instance, f.func_name, f)
12 return f
13 return decorator
14
15 @addto(foo)
16 def print_x(self):
17 print self.x
18
19 # foo.print_x() would print "42"
Counting function calls
1 class countcalls(object):
2 "Decorator that keeps track of the number of times a function is called."
3
4 __instances = {}
5
6 def __init__(self, f):
7 self.__f = f
8 self.__numCalls = 0
9 countcalls.__instances[f] = self
10
11 def __call__(self, *args, **kwargs):
12 self.__numCalls += 1
13 return self.__f(*args, **kwargs)
14
15 @staticmethod
16 def count(f):
17 "Return the number of times the function f was called."
18 return countcalls.__instances[f].__numCalls
19
20 @staticmethod
21 def counts():
22 "Return a dict of {function: # of calls} for all registered functions."
23 return dict([(f, countcalls.count(f)) for f in countcalls.__instances])
Generating Deprecation Warnings
1 import warnings
2
3 def deprecated(func):
4 """This is a decorator which can be used to mark functions
5 as deprecated. It will result in a warning being emitted
6 when the function is used."""
7 def newFunc(*args, **kwargs):
8 warnings.warn("Call to deprecated function %s." % func.__name__,
9 category=DeprecationWarning)
10 return func(*args, **kwargs)
11 newFunc.__name__ = func.__name__
12 newFunc.__doc__ = func.__doc__
13 newFunc.__dict__.update(func.__dict__)
14 return newFunc
15
16 # === Examples of use ===
17
18 @deprecated
19 def some_old_function(x,y):
20 return x + y
21
22 class SomeClass:
23 @deprecated
24 def some_old_method(self, x,y):
25 return x + y
Creating Well-Behaved Decorators
Note: This is only one recipe. Others include inheritance from a standard decorator (link?) and a factory function such as [http://www.phyast.pitt.edu/~micheles/python/decorator.zip Michele Simionato's decorator module] which even preserves signature information.
1 def simple_decorator(decorator):
2 """This decorator can be used to turn simple functions
3 into well-behaved decorators, so long as the decorators
4 are fairly simple. If a decorator expects a function and
5 returns a function (no descriptors), and if it doesn't
6 modify function attributes or docstring, then it is
7 eligible to use this. Simply apply @simple_decorator to
8 your decorator and it will automatically preserve the
9 docstring and function attributes of functions to which
10 it is applied."""
11 def new_decorator(f):
12 g = decorator(f)
13 g.__name__ = f.__name__
14 g.__doc__ = f.__doc__
15 g.__dict__.update(f.__dict__)
16 return g
17 # Now a few lines needed to make simple_decorator itself
18 # be a well-behaved decorator.
19 new_decorator.__name__ = decorator.__name__
20 new_decorator.__doc__ = decorator.__doc__
21 new_decorator.__dict__.update(decorator.__dict__)
22 return new_decorator
23
24 #
25 # Sample Use:
26 #
27 @simple_decorator
28 def mySimpleLoggingDecorator( func ):
29 def logged_func( *args, **kwargs ):
30 print 'calling %s' % func.__name__
31 return func( *args, **kwargs )
32 return logged_func
33
34 @mySimpleLoggingDecorator
35 def double(x):
36 "Doubles a number"
37 return 2*x
38
39 assert double.__name__ == 'double'
40 assert double.__doc__ == 'Doubles a number'
41 print double(155)
Enable/Disable Decorators
1 def unchanged(func):
2 "This decorator doesn't add any behavior"
3 return func
4
5 def disabled(func):
6 "This decorator disables the provided function, and does nothing"
7 def emptyFunc(*args,**kargs):
8 pass
9 return emptyFunc
10
11 # define this as equivalent to unchanged, for nice symmetry with disabled
12 enabled = unchanged
13
14 #
15 # Sample use
16 #
17
18 globalEnableFlag = int(True)
19
20 state = (disabled, enabled)[globalEnableFlag]
21 @state
22 def specialFunctionFoo():
23 print "function was enabled"
Easy Dump of Function Arguments
1 def dumpArgs(func):
2 "This decorator dumps out the arguments passed to a function before calling it"
3 argnames = func.func_code.co_varnames[:func.func_code.co_argcount]
4 fname = func.func_name
5 def echoFunc(*args,**kwargs):
6 print fname, ":", ', '.join('%s=%r' % entry
7 for entry in zip(argnames,args) + kwargs.items())
8 return func(*args, **kwargs)
9 return echoFunc
10
11 @dumpArgs
12 def f1(a,b,c):
13 print a + b + c
14
15 f1(1, 2, 3)
Pre-/Post-Conditions
1 """
2 Provide pre-/postconditions as function decorators.
3
4 Example usage:
5
6 >>> def in_ge20(inval):
7 ... assert inval >= 20, 'Input value < 20'
8 ...
9 >>> def out_lt30(retval, inval):
10 ... assert retval < 30, 'Return value >= 30'
11 ...
12 >>> @precondition(in_ge20)
13 ... @postcondition(out_lt30)
14 ... def inc(value):
15 ... return value + 1
16 ...
17 >>> inc(5)
18 Traceback (most recent call last):
19 ...
20 AssertionError: Input value < 20
21 >>> inc(29)
22 Traceback (most recent call last):
23 ...
24 AssertionError: Return value >= 30
25 >>> inc(20)
26 21
27
28 You can define as many pre-/postconditions for a function as you
29 like. It is also possible to specify both types of conditions at once:
30
31 >>> @conditions(in_ge20, out_lt30)
32 ... def add1(value):
33 ... return value + 1
34 ...
35 >>> add1(5)
36 Traceback (most recent call last):
37 ...
38 AssertionError: Input value < 20
39
40 An interesting feature is the ability to prevent the creation of
41 pre-/postconditions at function definition time. This makes it
42 possible to use conditions for debugging and then switch them off for
43 distribution.
44
45 >>> debug = False
46 >>> @precondition(in_ge20, debug)
47 ... def dec(value):
48 ... return value - 1
49 ...
50 >>> dec(5)
51 4
52 """
53
54 __all__ = [ 'precondition', 'postcondition', 'conditions' ]
55
56 DEFAULT_ON = True
57
58 def precondition(precondition, use_conditions=DEFAULT_ON):
59 return conditions(precondition, None, use_conditions)
60
61 def postcondition(postcondition, use_conditions=DEFAULT_ON):
62 return conditions(None, postcondition, use_conditions)
63
64 class conditions(object):
65 __slots__ = ('__precondition', '__postcondition')
66
67 def __init__(self, pre, post, use_conditions=DEFAULT_ON):
68 if not use_conditions:
69 pre, post = None, None
70
71 self.__precondition = pre
72 self.__postcondition = post
73
74 def __call__(self, function):
75 # combine recursive wrappers (@precondition + @postcondition == @conditions)
76 pres = set( (self.__precondition,) )
77 posts = set( (self.__postcondition,) )
78
79 # unwrap function, collect distinct pre-/post conditions
80 while type(function) is FunctionWrapper:
81 pres.add(function._pre)
82 posts.add(function._post)
83 function = function._func
84
85 # filter out None conditions and build pairs of pre- and postconditions
86 conditions = map(None, filter(None, pres), filter(None, posts))
87
88 # add a wrapper for each pair (note that 'conditions' may be empty)
89 for pre, post in conditions:
90 function = FunctionWrapper(pre, post, function)
91
92 return function
93
94 class FunctionWrapper(object):
95 def __init__(self, precondition, postcondition, function):
96 self._pre = precondition
97 self._post = postcondition
98 self._func = function
99
100 def __call__(self, *args, **kwargs):
101 precondition = self._pre
102 postcondition = self._post
103
104 if precondition:
105 precondition(*args, **kwargs)
106 result = self._func(*args, **kwargs)
107 if postcondition:
108 postcondition(result, *args, **kwargs)
109 return result
110
111 def __test():
112 import doctest
113 doctest.testmod()
114
115 if __name__ == "__main__":
116 __test()
Decorator decorator
For those decorators that return local functions, this will copy attributes from the original function object:
1 import warnings
2 def decorating(func, doc=''):
3 def provideatts(newFunc, ):
4 newFunc.__name__ = func.__name__
5 newFunc.__doc__ = (func.__doc__ or '') + '\n' + doc
6 newFunc.__dict__.update(func.__dict__)
7 return newFunc
8 return provideatts
9
10 # Example use:
11 def deprecated(func):
12 @decorating(func, doc='(Deprecated.)')
13 def you_will_never_see_this_name(*args, **kwargs):
14 warnings.warn("Call to deprecated function %s." % func.__name__,
15 category=DeprecationWarning)
16 return func(*args, **kwargs)
17 return you_will_never_see_this_name
Profiling/Coverage Analysis
The code and examples are a bit longish, so I'll include a link instead: http://mg.pov.lt/blog/profiling.html
Line Tracing Individual Functions
I cobbled this together from the trace module. It allows you to decorate individual functions so their lines are traced. I think it works out to be a slightly smaller hammer than running the trace module and trying to pare back what it traces using exclusions.
1 import sys
2 import os
3 import linecache
4
5 def trace(f):
6 def globaltrace(frame, why, arg):
7 if why == "call":
8 return localtrace
9 return None
10
11 def localtrace(frame, why, arg):
12 if why == "line":
13 # record the file name and line number of every trace
14 filename = frame.f_code.co_filename
15 lineno = frame.f_lineno
16
17 bname = os.path.basename(filename)
18 print "%s(%d): %s" % (bname, lineno,
19 linecache.getline(filename, lineno)),
20 return localtrace
21
22 def _f(*args, **kwds):
23 sys.settrace(globaltrace)
24 result = f(*args, **kwds)
25 sys.settrace(None)
26 return result
27
28 return _f