Differences between revisions 4 and 10 (spanning 6 versions)
Revision 4 as of 2008-11-15 14:01:21
Size: 2052
Editor: localhost
Comment: converted to 1.6 markup
Revision 10 as of 2012-05-31 06:16:44
Size: 2343
Editor: 123
Comment: Correct solution
Deletions are marked like this. Additions are marked like this.
Line 25: Line 25:
In one line:
{{{
    print sum( number for number in xrange(1000) if not (number % 3 and number % 5) )
}}}
Line 31: Line 36:
        x,y = 1,1         x,y = 0,1
Line 50: Line 55:
Alternately:
{{{
    import itertools

    def fib():
        x,y = 0,1
        while True:
            yield x
            x,y = y, x+y

    print sum(x for x in itertools.takewhile(lambda x: x <= 1000000, fib()) if x % 2 == 0)
}}}
Line 58: Line 76:
        global plist
Line 60: Line 77:
        i = 3
        while i <= max:
        for i in range(3, max, 2):
Line 67: Line 83:
            i = i+2
Line 72: Line 87:
                number = number / prime                 number /= prime
Line 75: Line 90:
                raise StopIteration                 break

Python Solutions to Project Euler.

Index

Solutions to the first 40 problems in functional Python

Just found this site which is apparently devoted to solutions for the Euler problem set, in python, with a functional flavor.

http://pyeuler.wikidot.com/

Problem 1: Add all the natural numbers below 1000 that are multiples of 3 or 5.

http://projecteuler.net/index.php?section=problems&id=1

    def multiples_of_3_or_5():
        for number in xrange(1000):
            if not number % 3 or not number % 5:
                yield number

    print sum(multiples_of_3_or_5())

In one line:

    print sum( number for number in xrange(1000) if not (number % 3 and number % 5) )

Problem 2: Find the sum of all the even-valued terms in the Fibonacci sequence which do not exceed one million.

http://projecteuler.net/index.php?section=problems&id=2

    def fib():
        x,y = 0,1
        while True:
            yield x
            x,y = y, x+y

    def even(seq):
        for number in seq:
            if not number % 2:
                yield number

    def under_a_million(seq):
        for number in seq:
            if number > 1000000:
                break
            yield number   

    print sum(even(under_a_million(fib())))

Alternately:

    import itertools

    def fib():
        x,y = 0,1
        while True:
            yield x
            x,y = y, x+y

    print sum(x for x in itertools.takewhile(lambda x: x <= 1000000, fib()) if x % 2 == 0)

Problem 3: Find the largest prime factor of 317584931803.

http://projecteuler.net/index.php?section=problems&id=3

    plist = [2]

    def primes(min, max):
        if 2 >= min: yield 2
        for i in range(3, max, 2):
            for p in plist:
                if i%p == 0 or p*p > i: break
            if i%p:
                plist.append(i)
                if i >= min: yield i
        
    def factors(number):
        for prime in primes(2, number):
            if number % prime == 0:
                number /= prime
                yield prime
            if number == 1:
                break

    print max(factors(317584931803))

ProblemSets/Project Euler Solutions (last edited 2012-05-31 06:16:44 by 123)

Unable to edit the page? See the FrontPage for instructions.