
Cross Platform Desktop
Applications With Python
Using Browser Front Ends

Python UI Toolkits

Cross Platform Toolkits

GTK+

wxWidgets

Qt

* Can’t forget tk!

What’s Wrong With Them?

Don’t look good/native on all platforms

Particularly MacOS X

Some overlap w/Standard Library

Often unpythonic

Bad doc strings

Useless Introspection

* Sometimes incompatibility with standard library and types
* Can’t introspect opaque objects
* You can still use them to talk to this server if that’s really what you want

Why Browsers?

Capabilities & Standards compliance have improved

CSS 2/3

AJAX

Available on almost every platform

Native look and feel

* Browsers available on every platform python supports

Why Browsers? (cont’d)

AJAX allows us to build more responsive apps

Thanks Microsoft!

Good embedded browser choices

XULRunner (mozilla)

WebKit (safari)

* Microsoft introduced the first AJAX functionality in Internet Explorer
** Probably to cause compatibility problems, but this backfires on Windows as a platform

What yadaf isn’t

A UI Toolkit

So why’d we just hear about toolkits?

A pure Python environment

You’re still stuck writing code in the browser

Ultimately, in Javascript

Or Silverlight/Flash

* Yet Another Desktop Application Framework

JavaScript? Ewww....

Lucky you, a new brand of tools has emerged

GWT

Compiles a Java-like language to Javascript &
HTML that use JSON to talk to non-Java servers

OpenLaszlo

Compiles custom XML to JS & HTML

Ext-JS

* OpenLaszlo is possibly the original non-Javascript AJAX tool
* Ext-JS is pure javascript, but usable
* All the toolkits abstract away browser differences

So What is yadaf?

Half of the desktop application / browser equation

Server backend

Glue between the server and your application

Automatic translation of data between server and
client

Abstract away JSON/SOAP/XML-RPC particulars

How yadaf Works

Application Server

Data Translation Layer

JSON Adapter Available, others easy to write

Your application core

Browser as UI

Enforces a logical break between UI and Backend

* Separation of business logic and front-end generally a good idea
* Makes it really easy to script your application using the web service APIs

Limiting the Magic

I personally despise too much “magic”

Provide up-to-date architecture diagrams

Make it easy to understand how parts work

Application Server

Translation Adapter

Instance Serialization (future?)

Translation Adapters

Implement 3 methods on Application Instances

_read

Translate POST data into application format

_transform

Convert URLs

_startSession

* _read takes wire data and creates a dictionary or objects to pass to application
* _transform is what turns dashes in URL names into underscores in method names, for
example
* _startSession is invoked on after your instance is first created
** usually just sends the session ID to the client

Applications

Must implement getSessionID()

Unique ID to identify an instance

Used to pass requests to the right instance

All methods named ws_ are exported as web service
APIs using the chosen translation adapter

http://localhost:xxxx/yy/do-something becomes
Application.ws_do_something

* In theory for a desktop application there’s only one instance
* All applications are hosted on a custom port and path root

http://localhost
http://localhost

Demo!

Issues

Instances never close

Not really a problem for Desktop Applications

Multipart form parsing is blocking

Session management could be more automatic

Force applications to subclass a basic application

* Really big file movements using multipart/form can block the backend and cause the UI to
become unresponsive
* Basic application would ensure that all translation adapter methods exist (even if empty)
and session management occurs using uuid module

Future

Browser Plugin

Cover Javascript DOM functionality in plugin that
exposes Python API

Bundled UI

Custom XULRunner/WebKit instance

Javascript extensions for control over menus, popup
windows, etc.

Future (cont’d)

Compiler for Python to JS/HTML

Less hard if only one renderer is supported

Non-desktop apps

BaseHTTPServer may not cut it

Serialize instances to DB

Integrate with Google Gears?

* pyjamas - GWT-like tool using Python, maintenance status unknown

Questions/Discussion

