
Quick & Dirty IPC in Python

Chuck Fox

PyCon DC 2005



Python: Make IPC Easy

• Parallel Processing in Python
– Threads are great but GIL is an issue

– Forking subprocesses can use multiple
CPU’s

– Memory Issues too

• But how to easily do IPC…



This is Python!

• Simple Things are Simple
– Can we pass objects between

processes?

– Use pre-existing socket infrastructure

– Use Cpickle

– Use the power of Interface design



Two Sides

• Object Sender
– The client

– Pickles an object

– Connects to UNIX named socket

– Sends the object off

– Operates inline with the client



Two Sides (2)

• Object Receiver
– The server

– Listens to the UNIX socket in a thread

– Reads in pickled byte streams

– Stores streams in a queue (1 object /
connection)

– Thread-safe poll () to get objects back
into main thread



More Details

• Sanity:
– Implement timeouts on sender & receiver

– Client has retry in busy situations

– Limits on queue size for memory

• Limitations:
– Object Receiver will block while reading in

each object

– Usually designed for a small number of
concurrent processes



Sample IPC flow

Sample Flow for IPC

Child 1
Forked from Parent
Sends Objects back

Child 2
Forked from Parent
Sends Objects Back

Parent Process
Starts Object Receiver



The Upshot

• Does it work:

– Yeah, in practice It’s OK

• What else could be done?
– Using the async core?

– Making a non-blocking server?

– Any off the wall recommendations?

• Now… onto the code.


