Differences between revisions 9 and 53 (spanning 44 versions)
Revision 9 as of 2004-12-04 05:26:33
Size: 21426
Comment:
Revision 53 as of 2014-05-26 15:03:26
Size: 22513
Editor: PaulBoddie
Comment: Added ACL.
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
#acl TrustedEditorsGroup:read,write,revert All:read
Line 13: Line 15:
  [http://cens.ioc.ee/projects/polyhedron/ [details]]
  [http://cens.ioc.ee/projects/polyhedron/src/polyhedron.tgz [source]]
  [[http://cens.ioc.ee/projects/polyhedron/|[details]]]
  [[http://cens.ioc.ee/projects/polyhedron/src/polyhedron.tgz|[source]]]
Line 20: Line 22:
  [http://www.nightmare.com/software.html [details]]
  [ftp://squirl.nightmare.com/pub/python/python-ext/avl/avl-2.0.tar.gz [source]]
  [[http://www.nightmare.com/software.html|[details]]]
  [[ftp://squirl.nightmare.com/pub/python/python-ext/avl/avl-2.0.tar.gz|[source]]]
Line 29: Line 31:
  [http://www.pythonpros.com/arw/bplustree [details]]
  [http://www.pythonpros.com/arw/bplustree/bplustree.py.txt [source]]
  [[http://www.pythonpros.com/arw/bplustree|[details]]]
  [[http://www.pythonpros.com/arw/bplustree/bplustree.py.txt|[source]]]
Line 37: Line 39:
  [http://musi-cal.mojam.com/~skip/python/ [details]]
  [http://musi-cal.mojam.com/~skip/python/fsm.py [source]]

  Finite State Machine module. (Skip Montanaro)
  [[http://musi-cal.mojam.com/~skip/python/|[details]]]
  [[http://musi-cal.mojam.com/~skip/python/fsm.py|[source]]]

  FiniteStateMachine module. (Skip Montanaro)
Line 43: Line 45:
  [http://www.ece.arizona.edu/~denny/python_nest/ [details]]
  [http://www.ece.arizona.edu/~denny/python_nest/graph_lib.py [source]]
  [[http://www.ece.arizona.edu/~denny/python_nest/|[details]]]
  [[http://www.ece.arizona.edu/~denny/python_nest/graph_lib.py|[source]]]
Line 52: Line 54:
  [http://www.pythonpros.com/arw/kjbuckets/ [details]]
  [http://www.pythonpros.com/arw/kjbuckets/kjb.tar.gz [source]]
  [[http://www.pythonpros.com/arw/kjbuckets/|[details]]]
  [[http://www.pythonpros.com/arw/kjbuckets/kjb.tar.gz|[source]]]
Line 65: Line 67:
  [http://www.nightmare.com/software.html [details]]
  [ftp://squirl.nightmare.com/pub/python/python-ext/misc/npstruct.tar.gz [source]]
  [[http://www.nightmare.com/software.html|[details]]]
  [[ftp://squirl.nightmare.com/pub/python/python-ext/misc/npstruct.tar.gz|[source]]]
Line 79: Line 81:
  [http://www.lemburg.com/files/python/mxDateTime.html [details]]
  [http://www.lemburg.com/files/python/egenix-mx-base-2.0.2.tar.gz [source]]
  [[http://www.lemburg.com/files/python/mxDateTime.html|[details]]]
  [[http://www.lemburg.com/files/python/egenix-mx-base-2.0.2.tar.gz|[source]]]
Line 90: Line 92:
  [http://www.pauahtun.org/ftp.html [details]]   [[http://www.pauahtun.org/ftp.html|[details]]]
Line 96: Line 98:
  [http://starship.python.net/crew/jbauer/normalDate/ [details]]
  [http://starship.python.net/crew/jbauer/normalDate/normalDate.py [source]]
  [[http://starship.python.net/crew/jbauer/normalDate/|[details]]]
  [[http://starship.python.net/crew/jbauer/normalDate/normalDate.py|[source]]]
Line 106: Line 108:
  * Fftw-numpy
  [http://pylab.sourceforge.net/ [details]]
  [http://pylab.sourceforge.net/packages/fftw-numpy-0.6.2.tar.gz [source]]

  Fftw-numpy is a generic wrapping of the FFTW-2.1.3 C-library into
  Python done using SWIG. FFTW is advertised as a very fast
  implementation of the FFT and I believe it lives up to its
  billing. It has support for arbitrary N-dimensional arrays as well
  as fast real-to-complex FFT's. As part of the package, I have
  included a module called FFT2 that can act as a drop-in replacement
  for FFT in NumPy (except there is no real-to-complex transform
  yet). There is also a benchmark script that shows that FFT2 is about
  18-25% faster than fftpack (at least on pentium machines). There is
  also support for arbitrary multidimensional transforms (not just
  2-D). (Travis Oliphant)
  * SciPy -- http://www.scipy.org
Line 123: Line 111:
  [http://starship.python.net/~hochberg/ [details]]
  [http://starship.python.net/~hochberg/fourier.py [source]]
  [[http://starship.python.net/~hochberg/|[details]]]
  [[http://starship.python.net/~hochberg/fourier.py|[source]]]
Line 131: Line 119:
  * Signaltools
  [http://pylab.sourceforge.net/ [details]]
  [http://pylab.sourceforge.net/packages/signaltools-0.5.3.tar.gz [source]]

  A work in progress toolbox intended to contain most of the signal
  processing functionality available in other array-oriented systems
  like MATLAB. the included routines are fast N-D convolution and N-D
  correlation procedures for use when filtering big datasets with
  small kernels and a fast N-D order statistic filter routine. (A
  median filter is an example of an order-filter and is also
  included). There is also a routine to filter along an arbitrary
  dimension of an N-D array with a rational transfer function filter
  (like the filter function in MATLAB) and a remez-exchange algorithm.
  Recently added are an N-D median filter and an N-D wiener filter.
  (Travis Oliphant)
  * PyIMSL -- http://www.roguewave.com/products/imsl-numerical-libraries/pyimsl-studio.aspx
Line 151: Line 125:
  [http://metro.yak.net/pyfi.html [details]]
  [http://metro.yak.net/pyfi.py [source]]
  [[http://hobbiton.thisside.net|[details]]]
  [[http://hobbiton.thisside.net/pyfi-2.4.py|[source]]]
Line 155: Line 129:
  (Rupert Scammell)   ([[http://hobbiton.thisside.net|[Rupert Scammell]]])
Line 158: Line 132:
  [http://starship.python.net/~zanzi/ [details]]
  [http://starship.python.net/~zanzi/pyFinancials-0.66.tgz [source]]
  [[http://starship.python.net/~zanzi/|[details]]]
  [[http://starship.python.net/~zanzi/pyFinancials-0.66.tgz|[source]]]
Line 164: Line 138:
  * PyIMSL -- http://www.roguewave.com/products/imsl-numerical-libraries/pyimsl-studio.aspx --
  Includes many standard financial calculations plus many other general functions used in finance.

  * MibianLib -- Options Pricing Library
  [[http://code.mibian.net]]


==== Geometry ====

  * PyGTS - http://pygts.sourceforge.net/ -- PyGTS is a python package used to construct, manipulate, and perform computations on triangulated surfaces. It is a hand-crafted and pythonic binding for the GNU Triangulated Surface (GTS) Library (http://gts.sourceforge.net/).

Line 167: Line 153:
  * Multipack
  [http://pylab.sourceforge.net/ [details]]
  [http://pylab.sourceforge.net/ [source]]

  A collection of FORTRAN routines interfaced with NumPy. There are
  modules for special function evaluation, signal and image
  processing, and modules that wrap common FORTRAN functions from
  ODEPACK, MINPACK, and QUADPACK. (Travis Oliphant)
  * SciPy -- http://www.scipy.org
Line 177: Line 156:
  [http://topo.math.u-psud.fr/~bousch/saml-eng.html [details]]
  [ftp://topo.math.u-psud.fr/pub/bousch/ [source]]
  [[http://topo.math.u-psud.fr/~bousch/saml-eng.html|[details]]]
  [[ftp://topo.math.u-psud.fr/pub/bousch/|[source]]]
Line 186: Line 165:
  [http://claymore.engineer.gvsu.edu/~steriana/Python [details]]
  [http://claymore.engineer.gvsu.edu/~steriana/Python/pymat.zip [source]]
  [[http://claymore.engineer.gvsu.edu/~steriana/Python|[details]]]
  [[http://claymore.engineer.gvsu.edu/~steriana/Python/pymat.zip|[source]]]
Line 197: Line 176:
  [http://www.mathsource.com/cgi-bin/MathSource/Enhancements/Interfacing/Other/0209-292 [details]]
  [http://www.mathsource.com/MathSource/Enhancements/Interfacing/Other/0209-292/pyml.tar.gz [source]]
  [[http://www.mathsource.com/cgi-bin/MathSource/Enhancements/Interfacing/Other/0209-292|[details]]]
  [[http://www.mathsource.com/MathSource/Enhancements/Interfacing/Other/0209-292/pyml.tar.gz|[source]]]
Line 206: Line 185:
==== Linear Programming ====
==== Mixed Integer and Linear Programming ====

  * Coopr
  [[http://software.sandia.gov/trac/coopr|[details]]]
  [[http://pypi.python.org/pypi/Coopr|[download]]]

  A COmmon Optimization Python Repository that includes Pyomo: a Pythonic Algebraic Modeling Language for mixed integer and linear programming.

  * pulp-or Mixed Integer Programming (MIP) and LP
  [[http://pulp-or.googlecode.com|[details]]]
  [[http://code.google.com/p/pulp-or/downloads/list|[download]]]
  
  PuLP is an LP modeler written in python. PuLP can generate MPS or LP files
  and call GLPK, COIN CLP/CBC, CPLEX, Gurobi and XPRESS to solve linear problems.
  PuLP can be installed from pypi via
{{{
$easy_install pulp-or
}}}

  * cvxopt
  [[http://abel.ee.ucla.edu/cvxopt/|[details]]]
  [[http://abel.ee.ucla.edu/cvxopt/download.php|[source]]]
  
  CVXOPT supports linear, quadratic and other advanced types of convex programming. It also has a interface to blas and lapack and is compatible with NumPy.
Line 210: Line 211:
  [http://eda.ei.tum.de/~mcp/lpsolvepy [details]]
  [http://eda.ei.tum.de/~mcp/lpsolvepy/lpsolve-3.2-0.2.tar.gz [source]]
  [[http://eda.ei.tum.de/~mcp/lpsolvepy|[details]]]
  [[http://eda.ei.tum.de/~mcp/lpsolvepy/lpsolve-3.2-0.2.tar.gz|[source]]]
Line 215: Line 216:

  * optimize
  [http://pylab.sourceforge.net/ [details]]
  FIXME broken link (netpedia.net is gone...)
http://oliphant.netpedia.net/packages/optimize.py [source]
((is it this ?: [http://pylab.sourceforge.net/packages/optimize.py http://pylab.sourceforge.net/packages/optimize.py] ))

  A module containing optimization algorithms written in pure
  Python. Currently it contains implementations of the Nelder-Mead
  simplex algorithm, the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
  quasi-Newton algorithm, and a line-search conjugate-gradient Newton
  algorithm for minimizing a function of many variables. (Travis
  Oliphant)

  * pySimplex ((FIXME both links broken !?))
  [http://www.pythonpros.com/arw/pysimplex/ [details]]
  [http://www.pythonpros.com/arw/pysimplex/pysimplex.tgz [source]]
     * Lp_solve5 (5.1 and 5.5) Mixed Integer Programming (MIP) and LP - New ones, NO python binding yet. Volunteers needed for python bindings.
  [[http://groups.yahoo.com/group/lp_solve/|[details]]]
  [[http://groups.yahoo.com/group/lp_solve/|[source]]]
  CPLEX, LINDO, AMPL/MathProg, LP etc. formats supported. (Noli Sicad)

  * pycplex
  [[http://www.cs.toronto.edu/~darius/software/pycplex|[details]]]
  Python interface to the ILOG CPLEX Callable Library.

  * GLPK (GNU Linear Programming Kit) MIP and LP
  [[http://www.gnu.org/software/glpk/glpk.html|[details]]]
  [[http://www.gnu.org/software/glpk/glpk.html|[source]]]
    Python bindings [[http://rpm.pbone.net/index.php3/stat/4/idpl/1709746/com/python-glpk-0.4-2mdk.i586.rpm.html|[source]]]
  Has python bindings for 4.7 and can be used for 4.8. No debian package (use RPM then Alien for debian)
  CPLEX, LINDO, AMPL/MathProg, LP etc. formats supported as well. (Noli Sicad)

  * SciPy -- http://www.scipy.org

  * pySimplex
  [[http://starship.python.net/crew/aaron_watters/pysimplex/|[pysimplex]]] (broken link)
  [[http://www.pythonpros.com/arw/pysimplex/|[details]]] (broken link)
  [[http://www.pythonpros.com/arw/pysimplex/pysimplex.tgz|[source]]] (broken link)
Line 241: Line 248:
  [http://www.omniscia.org/~vivake/python/ [details]]
  [http://www.omniscia.org/~vivake/python/Simplex.py [source]]
  [[http://web.archive.org/web/20040604151922/http://www.omniscia.org/~vivake/python/|[details]]]
  [[http://web.archive.org/web/20040602165806/http://www.omniscia.org/~vivake/python/Simplex.py|[source]]]
Line 247: Line 254:
  * PyIMSL -- http://www.roguewave.com/products/imsl-numerical-libraries/pyimsl-studio.aspx
Line 249: Line 258:
Line 251: Line 259:
  [http://www.nightmare.com/software.html [details]]
  [http://www.nightmare.com/squirl/python-ext/misc/matrix.py [source]]
  [[http://www.nightmare.com/software.html|[details]]]
  [[http://www.nightmare.com/squirl/python-ext/misc/matrix.py|[source]]]
Line 263: Line 271:
  * SparsePy
  [http://pylab.sourceforge.net/ [details]]
  [http://pylab.sourceforge.net/packages/SparsePy-0.1.tar.gz [source]]

  A module that implements a sparse matrix class for Python. The
  attributes of the class are Numeric arrays and the methods are based
  on the included toolkits SPARSEKIT2 by Yousef Saad (in FORTRAN) and
  SuperLU (in C) by Xiaoye Li and Jim Demmel. Note: You need the BLAS
  library (in LAPACK at netlib or from your vendor) and a FORTRAN
  compiler to compile this package. (The binary for Linux just needs
  Python and NumPy). (Travis Oliphant)

  * Sparsemodule
  [http://www.enme.ucalgary.ca/~nascheme/ [details]]
  [http://www.enme.ucalgary.ca/~nascheme/python/sparsemodule-0.4.tar.gz [source]]
  * SciPy -- http://www.scipy.org

  * Sparsemodule (Links are broken )
  [[http://www.enme.ucalgary.ca/~nascheme/|[details]]]
  [[http://www.enme.ucalgary.ca/~nascheme/python/sparsemodule-0.4.tar.gz|[source]]]
Line 283: Line 281:
  [http://MatPy.sourceforge.net [details]]
  [ftp://MatPy.sourceforge.net/pub/MatPy/ [source]]
  [[http://MatPy.sourceforge.net|[details]]]
  [[ftp://MatPy.sourceforge.net/pub/MatPy/|[source]]]
Line 298: Line 296:
  [http://www.execpc.com/~wsannis/ratio.html [details]]
  [http://www.execpc.com/~wsannis/ratio.py.txt [source]]
  [[http://www.execpc.com/~wsannis/ratio.html|[details]]]
  [[http://www.execpc.com/~wsannis/ratio.py.txt|[source]]]
Line 313: Line 311:
  * bpnn ((FIXME both links broken))
  [http://www.enme.ucalgary.ca/~nascheme/python/ [details]]
  [http://www.enme.ucalgary.ca/~nascheme/python/bpnn.py [source]]
  * bpnn
  [[http://arctrix.com/nas/python/bpnn.py|[source]]]
Line 320: Line 317:
==== Number Theory ====


  * logic
  [http://www.ourobourus.com [details FIXME: empty page ]]
  [http://www.ourobourus.com/logic.py-1.0.1.zip [source FIXME: broken link]]

  A class which provides pure 2, 3 and multi-value (fuzzy) logic.
  (Mark Summerfield)
  * PyIMSL -- http://www.roguewave.com/products/imsl-numerical-libraries/pyimsl-studio.aspx
Line 335: Line 324:
  [http://www.dorb.com/python/numberTheory.py [source FIXME: broken link]]   [[http://www.dorb.com/python/numberTheory.py|[source FIXME: broken link]]]
Line 341: Line 330:
  [http://sunsite.compapp.dcu.ie/pub/linux/redhat/DMA/ [details: FIXME: broken link]]
  [http://sunsite.compapp.dcu.ie/pub/linux/redhat/DMA/Python/SRPMS/FixedPoint-0.0.3-2.src.rpm [source]]
  [[http://sunsite.compapp.dcu.ie/pub/linux/redhat/DMA/|[details: FIXME: broken link]]]
  [[http://sunsite.compapp.dcu.ie/pub/linux/redhat/DMA/Python/SRPMS/FixedPoint-0.0.3-2.src.rpm|[source]]]
Line 347: Line 336:
  [http://www.binary.net/thehaas/fractionpy.shtml [details]]
  [http://www.binary.net/thehaas/fraction.tar.gz [source]]
  [[http://www.binary.net/thehaas/fractionpy.shtml|[details]]]
  [[http://www.binary.net/thehaas/fraction.tar.gz|[source]]]
Line 354: Line 343:
  [http://www.acl.lanl.gov/siloon/index.html [details]]
  [http://www.acl.lanl.gov/distributions/siloon-current.tgz [source]]
  [[http://www.acl.lanl.gov/siloon/index.html|[details]]]
  [[http://www.acl.lanl.gov/distributions/siloon-current.tgz|[source]]]
Line 367: Line 356:
  [http://sunsite.compapp.dcu.ie/pub/linux/redhat/DMA/ [details]]
  [http://sunsite.compapp.dcu.ie/pub/linux/redhat/DMA/Python/SRPMS/surd-1.1-1.src.rpm [source]]
  [[http://sunsite.compapp.dcu.ie/pub/linux/redhat/DMA/|[details]]]
  [[http://sunsite.compapp.dcu.ie/pub/linux/redhat/DMA/Python/SRPMS/surd-1.1-1.src.rpm|[source]]]
Line 373: Line 362:
  [http://sunsite.compapp.dcu.ie/pub/linux/redhat/DMA/ [details]]
  [http://sunsite.compapp.dcu.ie/pub/linux/redhat/DMA/Python/SRPMS/yarn-0.2.0-1.src.rpm [source]]
  [[http://sunsite.compapp.dcu.ie/pub/linux/redhat/DMA/|[details]]]
  [[http://sunsite.compapp.dcu.ie/pub/linux/redhat/DMA/Python/SRPMS/yarn-0.2.0-1.src.rpm|[source]]]
Line 378: Line 367:
  * escript - [[http://access.edu.au/content/view/78/|[details]]] -- escript is a python module to define and solve coupled, non-linear, time-dependend partial differential equations (PDEs).

  * PyIMSL -- http://www.roguewave.com/products/imsl-numerical-libraries/pyimsl-studio.aspx
Line 383: Line 375:
  [http://home.nikocity.de/polzin/python.html [details]]
  [http://th.informatik.uni-mannheim.de/cgi-bin/local/download.py?name=evol.py [source]]
  [[http://home.nikocity.de/polzin/python.html|[details]]]
  [[http://th.informatik.uni-mannheim.de/cgi-bin/local/download.py?name=evol.py|[source]]]
Line 391: Line 383:
  [http://home.nikocity.de/polzin/python.html [details]]
  [http://th.informatik.uni-mannheim.de/cgi-bin/local/download.py?name=explore.py [source]]
  [[http://home.nikocity.de/polzin/python.html|[details]]]
  [[http://th.informatik.uni-mannheim.de/cgi-bin/local/download.py?name=explore.py|[source]]]
Line 398: Line 390:
  [http://www.python.org/topics/scicomp/recipes_in_python.html [details]]
  [http://www.python.org/topics/scicomp/recipes_in_python.html [source]]
  [[http://www.python.org/topics/scicomp/recipes_in_python.html|[details]]]
  [[http://www.python.org/topics/scicomp/recipes_in_python.html|[source]]]
Line 411: Line 403:
  [http://starship.python.net/crew/jsaenz/pyclimate/ [details]]
  [http://starship.python.net/crew/jsaenz/pyclimate/downloads/PyClimate-1.1.1.tar.gz [source]]
  [[http://starship.python.net/crew/jsaenz/pyclimate/|[details]]]
  [[http://starship.python.net/crew/jsaenz/pyclimate/downloads/PyClimate-1.1.1.tar.gz|[source]]]
Line 423: Line 415:
  [http://home.nikocity.de/polzin/python.html [details]]
  [http://th.informatik.uni-mannheim.de/cgi-bin/local/download.py?name=pythonica-0.2.tar.gz [source]]
  [[http://home.nikocity.de/polzin/python.html|[details]]]
  [[http://th.informatik.uni-mannheim.de/cgi-bin/local/download.py?name=pythonica-0.2.tar.gz|[source]]]
Line 429: Line 421:
  * Quadrature
  [http://pylab.sourceforge.net/ [details]]
  [http://pylab.sourceforge.net/packages/quadrature.py [source]]

  A module that allows one to perform Gaussian Quadrature (numerical integration) over a finite interval for arbitrary Python functions.
  (Travis Oliphant)
  * graph-tool
  [[http://graph-tool.skewed.de|[details]]]

  A python module for efficient analysis of graphs (aka. networks), with
  algorithms implemented in C++ with the Boost Graph Library.


  * SciPy -- http://www.scipy.org
Line 437: Line 431:
  [http://starship.python.net/crew/hinsen/scientific.html [details]]
  [http://starship.python.net/crew/hinsen/ScientificPython-2.2.tar.gz [source]]
  [[http://dirac.cnrs-orleans.fr/ScientificPython/|[details]]]
  [[http://sourcesup.cru.fr/projects/scientific-py/|[download]]]
Line 446: Line 440:
  visualization via VRML, and two Tk widgets for simple line plots and
  3D wireframe models. (Konrad Hinsen)
  visualization via VRML, two Tk widgets for simple line plots and
  3D wireframe models, and support for ParallelProcessing. (KonradHinsen)
Line 454: Line 448:
  [http://www.ccraig.org/software [details]]
  [http://www.ccraig.org/software/ccrandom.py [source]]
  [[http://www.ccraig.org/software|[details]]]
  [[http://www.ccraig.org/software/ccrandom.py|[source]]]
Line 462: Line 456:
  * crng
  [http://www.sbc.su.se/~per/crng [details]]
  [http://www.sbc.su.se/~per/crng/crng-1.1.tar.gz [source]]
  * crng  ((FIXME: both links broken))
  [[http://www.sbc.su.se/~per/crng|[details]]]
  [[http://www.sbc.su.se/~per/crng/crng-1.1.tar.gz|[source]]]
Line 476: Line 470:
  * MTRand
  [http://www.dorb.com/darrell/randomNumber/ [details]]
  [http://www.dorb.com/darrell/randomNumber/Rand.zip [source]]
  * MTRand ((FIXME: both links broken))
  [[http://www.dorb.com/darrell/randomNumber/|[details]]]
  [[http://www.dorb.com/darrell/randomNumber/Rand.zip|[source]]]
Line 485: Line 479:
  * PyIMSL -- http://www.roguewave.com/products/imsl-numerical-libraries/pyimsl-studio.aspx
Line 487: Line 483:

  * Cephesmodule
  [http://pylab.sourceforge.net/ [details]]
  [http://oliphant.netpedia.net/packages/cephes-1.2.tar.gz [source]]

  A module patterned after the umath (ufuncs) module that comes with
  Numerical Python; it makes most of the special functions (like
  elliptic, and modified Bessel) from the cephes and amos libraries
  available to python. (Travis Oliphant)
  * SciPy -- http://www.scipy.org
Line 499: Line 487:
  * scikits.statsmodels

  [[http://pypi.python.org/pypi/scikits.statsmodels|[pypi]]]
  [[http://statsmodels.sourceforge.net/|[documentation]]]

  scikits.statsmodels is a pure python package that provides
  classes and functions for the estimation of several categories
  of statistical models. These currently include linear regression
  models, OLS, GLS, WLS and GLS with AR(p) errors, generalized
  linear models for six distribution families and M-estimators for
  robust linear models. An extensive list of result statistics are
  available for each estimation problem. More models especially for
  time series analysis are available in the development repository
  on launchpad.
Line 501: Line 503:
  [http://www.nmr.mgh.harvard.edu/Neural_Systems_Group/gary/python.html [details]]
  [http://www.nmr.mgh.harvard.edu/Neural_Systems_Group/gary/python/stats.py [source]]
  [[http://www.nmr.mgh.harvard.edu/Neural_Systems_Group/gary/python.html|[details]]]
  [[http://www.nmr.mgh.harvard.edu/Neural_Systems_Group/gary/python/stats.py|[source]]]
Line 512: Line 514:
  * Rpy
  [[http://rpy.sourceforge.net/|[details]]]
  [[http://rpy.sourceforge.net/|[source]]]
  RPy is a very simple, yet robust, Python interface to the R Programming Language.
  [[http://www.r-project.org/|[source]]]. It can manage all kinds of R objects and can execute arbitrary R functions (including the graphic functions). All errors from the R language are converted to Python exceptions. Any module installed for the R system can be used from within Python. (Noli Sicad)

  * SciPy -- http://www.scipy.org
Line 513: Line 523:
[http://www.python.org/pypi Python Package Index]. [[http://www.python.org/pypi|Python Package Index]].

  * PyIMSL -- http://www.roguewave.com/products/imsl-numerical-libraries/pyimsl-studio.aspx

The following are links to scientific software libraries that have been recommended by Python users.

This page lists a number of packages related to numerics, number crunching, signal processing, financial modeling, linear programming, statistics, data structures, date-time processing, random number generation, and crypto.

Data Structures

  • PyPolyhedron [details] [source] Calculate polyhedron's V- and H-representation. This is a Python interface to a C-library cddlib (Pearu Peterson)

  • avl_tree

    [details] [source] AVL module provide a hybrid between a dictionary and a list which can come in handy. AVL trees (named after the inventors, Adel'son-Vel'skii and Landis) are balanced binary search trees. (Sam Rushing)

  • bplustree

    [details] [source] Classical compsci B+trees, implemented entirely in Python: Fast, portable file based indexing with range queries and including a dbm-compatibility mode. (Aaron Watters)

  • fsm

    [details] [source]

    FiniteStateMachine module. (Skip Montanaro)

  • graph_lib

    [details] [source] This module defines the Python class Graph. Graph is loosely modelled after the Library of Efficient Data types and Algorithms (LEDA). It includes methods for constructing graphs, BFS and DFS traversals, topological sort, etc.

  • kjbuckets

    [details] [source] kjbuckets is a C extension to python which defines three Python data types kjSet, kjGraph, and kjDict, implemented using a fast and space efficient hash table strategy. The types are tightly coupled and may be combined and manipulated using a collection of fast "set at a time" operations written in C. If you need to manipulate collections and mappings quickly take a look at this module. It comes with no warrantee of course, but it has been pounded pretty heavily and I consider it fairly solid. (Aaron Watters)

  • npstruct

    [details] [source] An extension module useful for parsing and unparsing binary data structures. Somewhat like the standard struct module, but with a few extra features (bitfields, user-function-fields, byte order specification, etc...) and a different API more convenient for streamed and context-sensitive formats like network protocol packets, image and sound files, etc. (Sam Rushing)

Date/Time

  • mxDateTime

    [details] [source] These types were created to provide a consistent way of transferring date and time data between Python and databases. Apart from handling date before the Unix epoch (1.1.1970) they also correctly work with dates beyond the Unix time limit (currently with Unix time values being encoded using 32bit integers, the limit is reached in 2038) and thus is Year 2000 and Year 2038 safe. (M.-A. Lemburg)

  • Mayalib

    [details] [FTP://www.pauahtun.org/pub/mayalib.zip [source]] Mayan dates and numbers (math) for Python. (Ivan Van Laningham)

  • normalDate

    [details] [source]

    NormalDate is a specialized class to handle dates without all the excess baggage (time zones, daylight savings, leap seconds, etc.) of other date structures. (Jeff Bauer)

FFT

Finance

Geometry

Interface

  • SciPy -- http://www.scipy.org

  • SAML

    [details] [source] Interface to the "Simple Algebraic Math Library", a C library for computer algebra, together with some application programs: a desktop calculator, a spreadsheet (sort of) and a program to factorize integers. (Thierry Bousch)

  • pymat

    [details] [source]

    PyMat is an interface between NumPy and a MATLAB engine session. It can be used to support NumPy's functionality with the features of MATLAB. An example module is included that presents a very simple interface to MATLAB's plotting functions. This allows you to, for example, plot NumPy arrays in a MATLAB plot window. (Andrew Sterian)

  • PYML

    [details] [source] PYML is an interface between the computer language Python and Mathematica. Mathematica expressions can be written in Python code, evaluated, and their results returned to Python. Support for postscript graphics returned from Mathematica exists. (David Konerding)

Mixed Integer and Linear Programming

  • Coopr

    [details] [download] A COmmon Optimization Python Repository that includes Pyomo: a Pythonic Algebraic Modeling Language for mixed integer and linear programming.

  • pulp-or Mixed Integer Programming (MIP) and LP

    [details] [download] PuLP is an LP modeler written in python. PuLP can generate MPS or LP files and call GLPK, COIN CLP/CBC, CPLEX, Gurobi and XPRESS to solve linear problems. PuLP can be installed from pypi via

$easy_install pulp-or
  • cvxopt

    [details] [source]

    CVXOPT supports linear, quadratic and other advanced types of convex programming. It also has a interface to blas and lapack and is compatible with NumPy.

  • lpsolvpy

    [details] [source] An interface to the LGPL'd numerical linear program solver lp_solve. (Michael Pronath)

  • Lp_solve5 (5.1 and 5.5) Mixed Integer Programming (MIP) and LP - New ones, NO python binding yet. Volunteers needed for python bindings.

    [details] [source] CPLEX, LINDO, AMPL/MathProg, LP etc. formats supported. (Noli Sicad)

  • pycplex

    [details] Python interface to the ILOG CPLEX Callable Library.

  • GLPK (GNU Linear Programming Kit) MIP and LP

    [details] [source]

    Has python bindings for 4.7 and can be used for 4.8. No debian package (use RPM then Alien for debian) CPLEX, LINDO, AMPL/MathProg, LP etc. formats supported as well. (Noli Sicad)
  • SciPy -- http://www.scipy.org

  • pySimplex

    [pysimplex] (broken link) [details] (broken link) [source] (broken link) Pysimplex provides some basic symbolic programming tools for constructing, solving and optimizing systems of linear equations and inequalities. It includes an implementation of the classical SIMPLEX linear optimization algorithm as well as a filter for parsing and optimizing linear models encoded using the standard MPS format. (Aaron Watters)

  • Simplex

    [details] [source] Simplex minimizes an arbitrary nonlinear function of N variables by the Nedler-Mead Simplex method. (Vivake Gupta)

  • PyIMSL -- http://www.roguewave.com/products/imsl-numerical-libraries/pyimsl-studio.aspx

Matrix/Vector

  • matrix

    [details] [source] Yet Another Matrix Module. This one leans more toward the flexible end of the spectrum, sacrificing performance for correctness. For example, it can correctly handle rationals and other strange things being inserted into it. Also implemented: LU[P] decomposition, and a simultaneous linear equation solving capability. Most of the standard matrix ops: transpose, determinant, inverse, etc.. along with some functional-style methods for mapping and iteration. (Sam Rushing)

  • SciPy -- http://www.scipy.org

  • Sparsemodule (Links are broken )

    [details] [source] An extension module wrapping the sparse library. It can be used for solving large systems of linear equations. (Neil Schemenauer)

  • MatPy [details] [source] A Python package for numerical computation and plotting with a

    MatLab-like interface. It currently consists of wrappers around the Numeric, Gnuplot and SpecialFuncs packages. It provides an alternative interface to NumPy that is somewhat more convenient for matrix and vector computation. Eventually both will be based directly on the same low level routines. We are also looking for the possibility of interface to Octave. (H. Zhu)

Music

  • ratio

    [details] [source] For those who are big fans of Just Intonation, one tedious aspect of this is that you end up fondling ratios a lot. The math gets boring after a while, though I do believe you should be able to do the math on your own to get a feel for what it is you're doing. Having said that, I decided I needed some help because I got sick of reducing multiplied ratios. I've written a quick Python module, ratio.py, which handles a lot of the tedium. In particular, building up JI tetrachords and scales based on justly intuned chords or by katapyknosis is pretty simple with this module. (William Annis)

Neural Networks

Numerics

  • numberTheory [details !? FIXME: was same as source]

    [source FIXME: broken link] Collection of functions from the book numberTheory. Darrell Gallion.

  • FixedPoint [details: FIXME: broken link] [source] Fixed decimal precision arithmetic.

  • Fraction

    [details] [source] Simple class implemented in pure Python that does fraction arithmetic. (Mike Hostetler)

  • SILOON ((FIXME: both link broken))

    [details] [source] SILOON (Scripting Interface Languages for Object-Oriented Numerics) gives users the ability to rapidly prototype their scientific codes in a simple yet elegant fashion using the popular scripting languages Python and Perl. While programming in these flexible and dynamic languages, SILOON users maintain the capability of accessing the full power and complexity of C++ and FORTRAN (coming soon) libraries executed on high-performance parallel computers. (SILOON Team)

  • surd ((FIXME: both link broken))

    [details] [source] Irrational numbers (surds) as objects.

  • yarn ((FIXME: both link broken))

    [details] [source] Yet Another Rational Numbers module.

  • escript - [details] -- escript is a python module to define and solve coupled, non-linear, time-dependend partial differential equations (PDEs).

  • PyIMSL -- http://www.roguewave.com/products/imsl-numerical-libraries/pyimsl-studio.aspx

Other Tools

  • Evol

    [details] [source] Evolutions strategies: Powerful global optimisation Basic class for a global optimisation strategie called 'Evolutionsstrategie' by Prof. Schwefel. (Tobias Polzin)

  • explore

    [details] [source] Explore Array Data with Gnuplot Interactive Rotating, Zooming of 3D-gnuplot surface plot. (Tobias Polzin)

  • emath

    [details] [source] 100% Python functions which are based on the famous Numerical Recipes -- polynomial evaluation, zero- finding, integration, FFT's, and vector operations. "They are loosely modelled after Numerical Recipes in C because I needed, at the time, actual source codes which I can examine instead of just wrappers around Fortran

    libraries like NumPy and Octave. As evident from the documentations, the routines were written with emphasis on clarity rather than on runtime efficiency." (William Park)

  • PyClimate [details] [source] A Python package designed to accomplish some usual tasks during the analysis of climate variability using Python. It provides functions to perform some simple IO operations, operations with COARDS-compliant netCDF files, EOF analysis, SVD and CCA analysis of coupled data sets, some linear digital filters, kernel based probabilitydensity function estimation and access to DCDFLIB.C library from Python. (Jon Saenz)

  • Pythonica

    [details] [source] A simple version of mathematica for python. (Tobias Polzin)

  • graph-tool

    [details] A python module for efficient analysis of graphs (aka. networks), with algorithms implemented in C++ with the Boost Graph Library.

  • SciPy -- http://www.scipy.org

  • ScientificPython [details] [download] A collection of Python modules that are useful for scientific computing. In this collection you will find modules that cover basic geometry (vectors, tensors, transformations, vector and tensor fields), quaternions, automatic derivatives, (linear) interpolation, polynomials, elementary statistics, nonlinear least-squares fits, unit calculations, Fortran-compatible text formatting, 3D visualization via VRML, two Tk widgets for simple line plots and

    3D wireframe models, and support for ParallelProcessing. (KonradHinsen)

Random Number Generators

  • ccrandom

    [details] [source] This module is mostly compatible with Python's random module, but uses Linux or BSD's /dev/urandom device to generate numbers, thus yielding more random output than the default Python module. (Christopher A. Craig)

  • crng ((FIXME: both links broken))

    [details] [source] The Python module crng implements random-number generators (RNGs) based on several different algorithms producing uniform deviates in the open interval (0,1), i.e. exclusive of the end-point values 0 and 1. A few continuous and integer-valued non-uniform deviates are also available. Each RNG algorithm is implemented as a separate Python extension type. The RNG types are independent of each other, but have very similar interfaces. The entire module is implemented as one single C source code file. (Per J. Kraulis)

  • MTRand ((FIXME: both links broken))

    [details] [source] Mersenne Twister random number generator. Far longer period and far higher order of equidistribution than any other implemented generators. Fast generation and efficient use of memory. (Darrell Gallion)

  • PyIMSL -- http://www.roguewave.com/products/imsl-numerical-libraries/pyimsl-studio.aspx

Special Functions

Statistics

  • scikits.statsmodels

    [pypi] [documentation] scikits.statsmodels is a pure python package that provides classes and functions for the estimation of several categories of statistical models. These currently include linear regression models, OLS, GLS, WLS and GLS with AR(p) errors, generalized linear models for six distribution families and M-estimators for robust linear models. An extensive list of result statistics are available for each estimation problem. More models especially for time series analysis are available in the development repository on launchpad.

  • stats

    [details] [source] A collection of statistical functions, ranging from descriptive statistics (mean, median, histograms, variance, skew, kurtosis, etc.) to inferential statistics (t-tests, F-tests, chi-square, etc.). The functions are defined for operation on lists and, if Numeric is installed, also defined for array arguments. REQUIRES pstat.py (v0.3 or later) and io.py (v0.1 or later). (Gary Strangman)

  • Rpy

    [details] [source] RPy is a very simple, yet robust, Python interface to the R Programming Language. [source]. It can manage all kinds of R objects and can execute arbitrary R functions (including the graphic functions). All errors from the R language are converted to Python exceptions. Any module installed for the R system can be used from within Python. (Noli Sicad)

  • SciPy -- http://www.scipy.org

For more information on related numeric packages, see the Python Package Index.

NumericAndScientific/Libraries (last edited 2014-05-26 15:03:26 by PaulBoddie)

Unable to edit the page? See the FrontPage for instructions.